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Abstract. The Q-state Potts model in two dimensions in the presence of external magnetic
fields is studied. For generalQ > 3 special choices of these magnetic fields produce effective
models with smallerZ(Q′) symmetry(Q′ < Q). The phase diagram of these models and their
critical behaviour are explored by conventional finite-size scaling and conformal invariance.
The possibility of multicritical behaviour, for finite values of the symmetry-breaking fields, in
the cases whereQ > 4 is also analysed. Our results indicate that for effective models with
Z(Q′) symmetry(Q′ 6 4) the multicritical point occurs at zero field. This last result is also
corroborated by Monte Carlo simulations.

1. Introduction

The ferromagneticQ-state Potts model in two dimensions is among the most studied models
of statistical mechanics (see [1] for a review). In the absence of external fields the model
has a globalZ(Q) invariance† which, for low temperatures, is spontaneously broken giving
rise to phase transitions of second order forQ 6 4 and first order forQ > 4 [2]. The
critical fluctuations forQ = 2, 3 and 4 are governed by conformal field theories with central
chargesc = 1

2, 4
5 and 1, respectively, and the whole operator content of these models with

several boundary conditions is known [3].
In this paper we study the critical behaviour of these models on the square lattice, in

the presence of symmetry-breaking magnetic fields. In general, these fields will completely
break theZ(Q) symmetry, but for some special choices of these magnetic fields the resulting
effective model will have a residual symmetryZ(Q′), with Q′ < Q, and a domain wall
structure at low temperatures, similar to these in theQ′-state Potts model.

On general grounds [4], we do expect that in order–disorder phase transitions, of discrete
symmetry models, the critical behaviour is dictated mainly by the number of ground states
(zero-temperature configurations) and the relative surface energy of the infinite domain walls
connecting these ground states. This reasoning induces us to expect, for arbitrary values
of the symmetry-breaking fields, producing aZ(Q′) model, an effective model in the same
universality class as theQ′-state Potts model. However, this analysis is not valid in general
since some critical and multicritical models, like the Ising model and the tricritical Ising
model [5], although having the same number of ground states and domain wall structure at
low temperatures, exhibit distinct critical properties.

Straley and Fisher [6] by series expansion in theQ = 3 model suggested that theZ(2)

model, produced by the breaking fields, is in the same universality class as the two-state

† Actually the model has a larger symmetryS(Q), the permutation group ofQ objects.
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Potts model, for non-zero values of the fields. For values ofQ > 4, with Q′ < 4, the
mean-field analysis [1, 6] indicate a multicritical point for finite values of the critical field,
where the phase transition changes from first to second order.

Our study will be done numerically by using standard finite-size scaling [7] to obtain the
phase diagram of the models, and the machinery arising from conformal invariance [8, 9]
to distinguish the several possible critical behaviours. In the location of multicritical points
for Q > 4 we also perform some Monte Carlo simulations by calculating the fourth-order
cumulant of the magnetization.

2. The model

Defining at each lattice siteEr = (i, j) of a square lattice an integer variablenEr =
0, 1, . . . , Q−1, the Hamiltonian of theQ-state Potts model withnh (nh = 0, 1, . . . , Q−1)
symmetry-breaking fields{h̃m} (m = 0, 1, . . . , nh − 1) is given by

HQ(ε, {h̃m}) = −ε
∑
〈Er,Er ′〉

δnEr ,nEr′ −
nh−1∑
m=0

∑
Er

h̃mδnEr ,m (1)

whereε > 0 is the ferromagnetic coupling and the first sum runs over nearest-neighbour
sites. In the absence of external fields the model has aZ(Q) symmetry, since the
configuration{nEr} and {nEr + l, modQ} (l = 1, 2, . . . , Q) has the same energy. The fields
{h̃m}, depending on their relative values, break this symmetry totally or partially. The
interesting cases where the symmetry is partially broken are those whereh̃m = h̃ > 0
(m = 0, 1, . . . , nh − 1) and the remaining symmetry isZ(nh)⊗Z(Q− nh). This symmetry
corresponds toZ(nh) rotations among the variables pointing in the field directions and
Z(Q − nh) rotations among the other variables. At zero temperature we havenh ground
states and we do expect that theZ(nh) symmetry is spontaneously broken.

Rather than working with the above Euclidean version of the model it is convenient
to consider its quantum Hamiltonian version in order to simplify our numerical analysis.
As usual [10] both versions are expected to share the same long-distance physics since
the vertical–horizontal anisotropy in the coupling constants does not destroy the essential
physical ingredients of the model. The row-to-row transfer matrix as well as the associated
τ -continuum quantum Hamiltonian [10] can be derived by a standard procedure (see [11]
for example). The associated one-dimensional quantum Hamiltonian in anL-site chain is
given by

Ĥ = −
L∑

l=1

q−1∑
α=0

(
(Ŝl Ŝ

†
l+1)

α + λR̂α
l +

nh−1∑
m=0

hm(Ŝl e−(2π i/Q)m)α
)

(2)

whereλ plays the role of temperature and the magnetic fields{hm} (m = 0, 1, . . . , nh − 1)
are related with the fields{h̃m} in (1). In equation (2)Ŝl and R̂l are LQ ⊗ LQ matrices
satisfying theZ(Q) algebra

[R̂l, Ŝk] = (θ − 1)δk,l ŜkR̂l R̂
q

l = Ŝ
q

l = 1

whereθ = exp(i2π/Q), and in the basis wherêSl is diagonal they are given by

Ŝl = 1 ⊗ 1 ⊗ · · · 1 ⊗ S ⊗ 1 · · · ⊗ 1

R̂l = 1 ⊗ 1 ⊗ · · · 1 ⊗ R ⊗ 1 · · · ⊗ 1
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where the matricesS andR are in thelth position in the product and are given by

S =
Q−1∑
i=0

θ i |i〉〈i| R =
Q−1∑
i=0

|i〉〈[i + 1]Q|

and the symbol [x + y]Q means the addition(x + y), moduloQ.
In the absence of magnetic fields (hm = 0; m = 0, 1, . . . , nh − 1) theZ(Q) symmetry

of (1) is reflected in (2) by its commutation with theZ(Q)-charge operator

P̂ =
L∏

i=1

R̂l P̂ Q = 1 . (3)

The Hilbert space associated with (2) can therefore be separated into disjoint sectors labelled
by the eigenvalues exp(i2πq/Q), (q = 0, 1, . . . , Q−1) of (3). The interesting cases, which
we will concentrate on in this paper, are obtained by choosing in (2) equal values for the
magnetic fields†

h1 = h2 = · · · = hnh
= h > 0 . (4)

In this case the symmetryZ(nh) ⊗ Z(Q − nh) of (1) is reflected by the simultaneous
commutation of (2) with the ‘parity’ operators

V̂ =
L∏

i=1

V̂l V̂ nh = 1 (5)

Ŵ =
L∏

i=1

Ŵl ŴQ−nh = 1 (6)

with

V̂l = 1 ⊗ 1 ⊗ · · · 1 ⊗ V ⊗ 1 · · · ⊗ 1

Ŵl = 1 ⊗ 1 ⊗ · · · 1 ⊗ W ⊗ 1 · · · ⊗ 1

andV andW , located at thelth position in the product, areQ × Q matrices given by

V =
nh−1∑
i=0

|i〉〈[i + 1]nh
| +

Q−1∑
i=nh

|i〉〈i|

W =
nh−1∑
i=0

|i〉〈i| +
Q−1∑
i=nh

|i〉〈[i + 1]Q−nh
| .

The Hilbert space associated with (2) is now separated intonh(Q − nh) disjoint sectors
labelled by the eigenvalues exp(i2πv/nh) and exp(i2πw/Q − nh) (v = 0, 1, . . . , nh − 1,
w = 0, 1, . . . , Q − nh − 1 ) of the operatorŝV andŴ , respectively.

In the numerical diagonalization of (2), with periodic boundaries, all the above
symmetries, together with the translational invariance, enable us to handle large lattices
with modest computer time and memory. We use the Lanczos method to diagonalize (2)
up to L = 10, 11 and 13, forQ = 5, 4 and 3, respectively.

† The cases whereh < 0 are physically equivalent to the choicesn′
h = Q − nh, with h′ > 0.
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3. Results

We considered in our study only the interesting cases whereQ > nh > 2 andh1 = h2 =
· · · = hnh

= h > 0, since in these cases a symmetryZ(Q′) (Q′ = nh > 2) always remains
for h 6= 0.

When h = 0 the model is self-dual with a phase transition atλc(0) = 1, which has a
second-order or first-order nature depending on whetherQ 6 4 or Q > 4, respectively. In
the limit h → ∞ the eigenvectors of̂Si in (2) with eigenvaluesθ l , l = nh, nh+1, . . . , Q−1,
are forbidden and we have an effectivenh-state Potts model at zero field. Analysing the
effect of (2) in the remainingnL

h -dimensional Hilbert space it is not difficult to see that the
phase transition happens at

λc(h → ∞) = Q

nh

. (7)

Between these two extremum values ofh we estimate the phase transition curveλc(h) by
using standard finite-size scaling. The curve is evaluated by extrapolations to the bulk limit
(L → ∞) of sequencesλc(h, L) obtained by solving [7]

0L(λc)L = 0L+1(λc)(L + 1) L = 2, 3 . . . (8)

where0L(λc) is the mass gap of the Hamiltonian (2) withL sites.
Once the transition curve is estimated, in the region of continuous phase transitions we

expect the model to be conformally invariant. This symmetry allows us to infer the critical
properties from the finite-size corrections to the eigenspectrum atλc [8]. The conformal
anomalyc can be calculated from the large-L behaviour of the ground-state energyE0(L).
For periodic chainsE0(L) behaves as

E0(L)

L
= ε∞ − πcvs

6L2
+ o(L−2) (9)

whereε∞ is the ground-state energy, per site, in the bulk limit andvs is the sound velocity.
The scaling dimensions of operators governing the critical fluctuations (related to critical
exponents) are evaluated from the finite-L corrections of the excited states. For each
primary operator, with dimensionxφ and spinsφ , in the operator algebra of the system,
there exists an infinite tower of eigenstates of the quantum Hamiltonian, whose energy
E

φ

m,m′ and momentumP
φ

m,m′ , in a periodic chain are given by

E
φ

m,m′(L) = E0 + 2πvs

L
(xφ + m + m′) + o(L−1)

P
φ

m,m′ = (sφ + m − m′)
2π

L

(10)

wherem, m′ = 0, 1, . . . .
We present our results separately for the casesQ 6 4 andQ > 4 in the next sections.

3.1. Models withQ 6 4

There exist three interesting cases, namely, the three-state Potts model with two fields
(Q = 3, nh = 2) and the four-state Potts model with three and two fields (Q = 4, nh = 3, 2).

The critical curves were obtained by solving (8) and are estimated from the spectra
of lattice sizes up toL = 11, L = 10 andL = 8 for Q = 3, Q = 4 and Q = 5,
respectively. As an example, in figure 1 we show the extrapolated curve for the case of
Q = 3 and nh = 2 and in table 1 we show the finite-size sequences together with the
extrapolated results for some values ofh. We also show in figure 1 the curve obtained by



Critical behaviour of Potts models 3333

Figure 1. Estimates for the critical curve of the three-state Hamiltonian (2) withnh = 2 fields.
The curve in the largest scale, for 0< h < 5, interpolates the points obtained by extrapolating
the solutions of (8) forL = 2–13 (circles). The inserted curve for 0< h < 50 was obtained by
solving (8) forL = 5.

Table 1. Finite-size dataλL−1,L
c and extrapolations for the transition temperature of the three-

state Potts chain (2) withnh = 2 magnetic fields (h0 = h1 = h). These sequences are obtained
by solving (8) forL = 4–11.

N\ h 0.5 1.0 1.5 2.0

5 1.171 942 2 1.235 993 5 1.278 124 7 1.308 620 2
6 1.168 766 4 1.232 876 8 1.274 685 7 1.304 939 5
7 1.167 567 9 1.231 445 9 1.273 072 9 1.303 209 6
8 1.166 999 4 1.230 687 4 1.272 214 6 1.302 289 4
9 1.166 684 3 1.230 246 6 1.271 715 8 1.301 754 8

10 1.166 492 0 1.229 972 8 1.271 406 1 1.301 423 1
11 1.166 367 0 1.229 793 8 1.271 203 7 1.301 206 4

∞ 1.1660(4) 1.2292(8) 1.2706(2) 1.3005(9)

solving (8) forL = 5. We clearly see an agreement with the limiting valuesλc(0) = 1 and
λc(h → ∞) = 3

2, predicted by (7). Similar curves are obtained in the other cases. In order
to extract the conformal anomaly and dimensions from finite-lattice data and relations (9),
(10) we need to calculate the sound velocityvs. This can be done from the difference
between higher energy states associated with the same primary operator. In our calculations
we estimatedvs from the lowest energy gap between the eigenstates with momentum 2π/L

and zero in the sector wherev = 1 (tables 2 and 3) orv = 1, w = 0 (table 4). The
conformal anomaly and dimensions are extracted from the diagonalization of lattice sizes
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Table 2. Extrapolated and conjectured results for the conformal anomalyc and anomalous
dimensionsxn(k, v) of the three-state Potts chain (2) withnh = 2 magnetic fields (h0 = h1 = h)
(see the text). The conjectured values, in parentheses, are the corresponding ones in the critical
Ising model.

h c x2(0, 0) x1(1, 0) x1(0, 1) x1(1, 1)

0.5 0.5008(7) 1.0007(3) 2.00(1) 0.125(1) 1.125(1)
(0.5) (1) (2) (0.125) (1.125)

1.0 0.5000(0) 0.9999(6) 1.999(5) 0.1249(7) 1.1249(7)
(0.5) (1) (2) (0.125) (1.125)

1.5 0.5000(3) 1.0000(0) 1.9999(7) 0.124(9) 1.124(9)
(0.5) (1) (2) (0.125) (1.125)

2.0 0.5000(8) 1.0000(0) 2.0000(0) 0.1250(0) 1.1250(0)
(0.5) (1) (2) (0.125) (1.125)

Table 3. Extrapolated and conjectured results for the conformal anomalyc and anomalous
dimensionsxn(k, v) of the four-state Potts chain (2) withnh = 3 magnetic fields (h0 = h1 =
h2 = h) (see the text). The conjectured values, in parentheses, are the corresponding ones
appearing in the three-state Potts model.

h c x2(0, 0) x3(0, 0) x1(0, 1) x2(0, 1) x1(1, 1) x2(1, 1)

0.5 0.80(0) 0.800(1) 2.7(9) 0.133(3) 1.33(2) 1.133(3) 2.33(2)
(0.8) (0.8) (2.8) (0.133. . .) (1.33. . .) (1.13 3. . .) (2.33. . .)

1.0 0.799(1) 0.799(7) 2.(8) 0.132(9) 1.33(0) 1.132(9) 2.33(1)
(0.8) (0.8) (2.8) (0.133. . .) (1.33. . .) (1.13 3. . .) (2.33. . .)

1.5 0.7(9) 0.79(9) 2.8(3) 0.133(4) 1.33(0) 1.133(4) 2.331(9)
(0.8) (0.8) (2.8) (0.133. . .) (1.33. . .) (1.13 3. . .) (2.33. . .)

2.0 0.799(1) 0.799(9) 2.8(4) 0.1334(5) 1.33(0) 1.1334(5) 2.331(9)
(0.8) (0.8) (2.8) (0.133. . .) (1.33. . .) (1.133. . .) (2.33. . .)

Table 4. Extrapolated and conjectured results for the conformal anomalyc and anomalous
dimensionsxn(k, v, w) of the four-state Potts chain (2) withnh = 2 magnetic fields (h0 = h1 =
h) (see the text). The conjectured values, in parentheses, are the corresponding ones in the
critical Ising model.

h c x2(0, 0, 0) x1(1, 0, 0) x1(0, 1, 0) x1(1, 1, 0)

0.5 0.500(2) 0.99(7) 1.94(4) 0.124(8) 1.124(8)
(0.5) (1) (2) (0.125) (1.125)

1.0 0.50(5) 1.000(0) 1.99(9) 0.1250(9) 1.1250(9)
(0.5) (1) (2) (0.125) (1.125)

1.5 0.500(0) 0.999(9) 1.999(6) 0.124(9) 1.124(9)
(0.5) (1) (2) (0.125) (1.125)

2.0 0.500(0) 0.999(9) 1.999(7) 0.1249(9) 1.1249(9)
(0.5) (1) (2) (0.125) (1.125)

up to L = 13, L = 11 andL = 10 for Q = 3, Q = 4 and Q = 5, respectively. In
tables 2–4 we show for some values ofh the extrapolated results obtained for the cases
(Q = 3, nh = 2) (Q = 4, nh = 3) and (Q = 4, nh = 2), respectively. In these tables
we also present our conjectured values. The dimensionsxn(k, v) andxn(k, v, w) appearing
in these tables are obtained by using in (10) thenth (n = 1, 2, 3, . . .) eigenenergy in
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Table 5. Finite-size data for the dimensions appearing in table 3 forho = h1 = 0.5.

N c x2(0, 0) x3(0, 0) x1(0, 1) x2(0, 1) x1(1, 1) x2(1, 1)

4 1.163 061 0.887 205 1.425 469 0.151 106 1.372 092 1.151 106 2.043 787
5 0.987 025 0.865 098 1.752 073 0.144 513 1.352 017 1.144 513 2.129 591
6 0.916 140 0.850 707 2.044 138 0.141 080 1.343 087 1.141 080 2.182 175
7 0.879 673 0.841 268 2.309 421 0.139 052 1.338 565 1.139 052 2.216 561
8 0.858 147 0.834 729 2.526 251 0.137 749 1.336 066 1.137 749 2.240 261
9 0.844 289 0.829 975 2.658 683 0.136 862 1.334 600 1.136 862 2.257 301

10 0.834 816 0.826 382 2.721 638 0.136 230 1.333 701 1.136 230 2.269 973
11 0.828 048 0.823 581 2.752 943 0.135 765 1.333 134 1.135 765 2.279 661

∞ 0.80(0) 0.800(1) 2.7(9) 0.133(3) 1.33(2) 1.133(3) 2.33(2)

the sector with momentum 2πk/L (k = 0, 1, . . .) and eigenvalues exp(i2πv/Q − nh) and
exp(i2πw/Q − nh)(v = 0, 1, . . . , nh −1, w = 0, 1, . . . , Q−nh −1) of the operatorŝV and
Ŵ defined in (5) and (6), respectively. The ground-state energy is the first energy (n = 1)
in the sector with (k = 0, v = 0) in the cases (Q = 3, nh = 2), (Q = 4, nh = 3) and in
the sector (k = 0, v = 0, w = 0) in the case (Q = 4, nh = 2). The extrapolations were
obtained by using theε-alternatedVBS approximants [12]. The errors are estimated from
the stability of the extrapolations and are in the last digit. In order to illustrate these we
also show in table 5 the finite-size sequences used to estimate the dimensions in the case
whereQ = 3, nh = 2 andh = 0.5.

We see in table 2 that for all values ofh the conformal anomaly isc = 1
2, indicating

that the model shares the same universality class as theZ(2) Ising model. The dimensions
1 and 1

8 correspond to the dimensions of the energy and magnetic operator in the Ising
model and the dimension 2= 1+ 1 and 9

8 = 1+ 1
8 are the next dimensions in the tower of

these operators (see equation (10)).
In table 3 we clearly see that the conformal anomaly for all values ofh is c = 4

5. There
exist two modular invariant universality classes of conformal theories withc = 4

5 [13]. One
of these can be represented by the restricted solid-on-solid (RSOS) model [16, 17] and the
other by the three-state Potts model with no magnetic fields. These two models, although
having the same conformal anomalyc = 4

5, have a distinct operator content. The dimension
x = 0, 4

5, 14
5 , 2

5, 4
3 in table 3 and the degeneracy of the sectors where the operatorV̂ in (5)

has eigenvalues exp(i2π/3) and exp(i4π/3) indicate that the model belongs to the same
universality class as the three-state Potts model.

In table 4, as in table 2, the conformal anomaly isc = 1
2 and the dimensions are those

of the Ising model indicating that both models are in the same universality class.
Beyond the values ofh presented in tables 1–3 we also performed a careful analysis for

small values of(h ∼ 0.01) finding similar results to those presented in these tables. These
indicate that forQ 6 4, where the model has a second-order phase transition in the absence
of external fields, the introduction ofnh (Q > nh > 2) fields, of arbitrary strength, brings
the model into the universality class of a Potts model withnh states.

3.2. Models withQ > 4

In this case, while in the absence of external fields the models exhibit a first-order phase
transition the introduction ofnh magnetic fields (4> nh > 2) of infinite and equal strength
(h → ∞) render them an effectivenh-state Potts model, which has a second-order phase
transition. This brings the interesting possibility of a multicritical behaviour for a finite
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value ofh, when the transition curve changes from second to first order as we decreaseh

from the infinite value. In fact, this is the mean-field prediction [6].

Table 6. Finite-size sequencescL,L+1, defined in (9) for the five-state Potts model Hamiltonian
(2) with nh = 2 (h0 = h1 = h) external magnetic fields. The last line gives the extrapolated
results. These sequences are calculated at the extrapolated couplingsλc = 1.067(3), λc =
1.113(7), λc = 1.333(8) and λc = 1.500(1) for h = 0.05, h = 0.1, h = 0.5 andh = 1.0,
respectively.

N \ h 0.05 0.1 0.5 1.0

4 1.494 578 1.293 239 0.822 347 0.747 102
5 1.150 201 0.947 010 0.665 147 0.632 826
6 0.957 555 0.784 083 0.603 697 0.583 638
7 0.834 717 0.696 948 0.572 906 0.558 058
8 0.753 559 0.646 537 0.554 626 0.542 796
9 0.698 775 0.615 352 0.542 598 0.532 888

10 0.660 931 0.594 802 0.534 149 0.526 071

∞ 0.5(7) 0.5(5) 0.48(9) 0.50(0)

Since the Hilbert space grows exponentially withQ, the simplest case where the above
critical point may occur is the five-state Potts model in the presence ofnh = 2 magnetic
fields. In table 6 we present, for some values ofh, our results for the finite-size sequences
of the conformal anomaly of the model. These sequences are obtained from (10) and (9)

cL,L+1 = 12[(L + 1)E0(L) − LE0(L + 1)]

[(L + 1)2 − L2][E2(L + 1) − E1(L + 1)]
(11)

whereE0(L) is the ground-state energy for the chain of lengthL and E2(L), E1(L) are
the lowest eigenenergies with momentum 0 and 2π/L, respectively, in the sector where
the operatorsV̂ andŴ , defined in (5) and (6) has eigenvalues (−1) and (1). Although the
precision is lower than those of the preceding tables these results indicate that forh >∼ 0.05
we still have an Ising-like behaviour withc = 1

2. For h < 0.05, and for the lattice sizes we
were able to handle, it is not possible to obtain reliable results using (11).

A heuristic method, which was proved to be effective in obtaining multicritical points
in earlier works [16] is to simultaneously solve (8) for three different lattice sizes

0L(λc)L = 0L+1(λc)(L + 1) = 0L+2(λc)(L + 2) . (12)

We tried to solve these equations for 0.5 > λ > 0 (L = 5) and found no consistent solutions,
which indicates the absence of a tricritical point for a finite value ofh.

Another method, also used to locate multicritical points [16], is obtained from the
simultaneous crossing of two different gaps on a given pair of lattices (instead of three
lattices as in (12)). Trying several different gaps we also did not find, within this method,
a multicritical point forh 6= 0.

Since these methods are heuristic and the lattice sizes we are considering may not be
enough to obtain the bulk limit (L → ∞) in the regionh ∼ 0 we will supplement our results
by Monte Carlo simulations. These simulations will enable us to distinguish the order of
the phase transition as we change the magnetic field strength. We simulate the systems by
the heat-bath algorithm and analyse the fourth-order cumulant of the magnetization as a
function of the magnetic field. The simulations were done directly in the classical version
of the model (1). Since the evidence of a multicritical point, for non-zero values ofh,
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Figure 2. Fourth-order cumulant of the magnetization (13) as a function ofβ for the seven-state
Potts model in the presence ofnh = 2 external fieldsh̃0 = h̃1=0.01 (see equation (1)). The
lattice sizes areL = 50× 50, L = 80× 80 andL = 170× 170.

would be large for higher values ofQ, we chooseQ = 7 andnh = 2 (h̃0 = h̃1 = h) for
extensive calculations.

The fourth-order cumulant of the magnetization is defined by

UL = 1 − 〈m4〉L
3〈m2〉2

L

(13)

where the averages are done on anL × L lattice. The magnetization in (13), for a given
configuration{nEr} of classical variables, is defined by

m = 1

L2

∑
Er

(δnEr ,0 − δEr,1) .

Following Binder [17], the cumulant (13) will be zero forT > Tc andUL = 2
3 for T < Tc.

At the transition temperatureTc equation (13) will be zero for continuous phase transitions
and negative for first-order phase transitions.

In figure 2 we show the values ofUL for lattice sizes 50× 50, 80× 80 and 170× 170.
In the simulations we chooseε = 1, h̃ = 0.01 and each point was obtained by averaging
5 × 104 iterations, after thermalization. We see in this figure that while forL = 50 the
phase transition appears to be first order, asL grows the numerical results indicates the
phase transition to be continuous. The result for the smaller latticeL = 50 is clearly due
to the finite size of the lattice. By repeating these simulations for even smaller values ofh̃
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we should expect that these finite-size effects will be apparent for even larger lattices, and
our simulations are in favour of a multicritical point only ath̃ = 0.

4. Conclusion

We have calculated the phase transition diagram and critical properties of theQ-state Potts
model in the presence ofnh (Q > nh > 1) external magnetic fields of equal strength
h > 0. In the case whereQ > nh > 2 the original symmetry, ath = 0, breaks into
a Z(nh) ⊗ Z(Q − nh) symmetry. TheZ(nh) part of the above symmetry relates the
configurations of thenh distinct ground-state configurations at zero temperature, and by
standard arguments, should be spontaneously broken at low temperatures.

Our results, based on conformal invariance and supplemented by Monte Carlo simulation
indicate that, for arbitrary values ofh, the order–disorder phase transition associated with
the globalZ(nh) symmetry is in the same universality class of thenh-state Potts model.
Moreover, forQ > 4, contrary to the mean-field prediction, we do not see any evidence
of a multicritical point for non-zero values ofh. This is a surprising and quite unusual
result since the presence of equal 4> nh > 2 arbitrary small symmetry-breaking fields in
the Q > 4 models, which in the absence of fields have finite gap and correlation length at
the transition point, will produce effectivenh-state Potts models with no gap and infinite
correlation length. Certainly additional calculations using different methods or even more
extended calculations will be welcome to test our available evidence in favour of the above
scenario.

Acknowledgments

We thank M T Batchelor for a careful reading of our manuscript. This work was supported
in part by Conselho Nacional de Desenvolvimento Cientı́fico e Tecnoĺogico—CNPq-Brazil
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