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Abstract. The Q-state Potts model in two dimensions in the presence of external magnetic
fields is studied. For gener@ > 3 special choices of these magnetic fields produce effective
models with smalleZ(Q’) symmetry(Q’ < Q). The phase diagram of these models and their
critical behaviour are explored by conventional finite-size scaling and conformal invariance.
The possibility of multicritical behaviour, for finite values of the symmetry-breaking fields, in
the cases wher® > 4 is also analysed. Our results indicate that for effective models with
Z(Q") symmetry(Q’ < 4) the multicritical point occurs at zero field. This last result is also
corroborated by Monte Carlo simulations.

1. Introduction

The ferromagneti@-state Potts model in two dimensions is among the most studied models
of statistical mechanics (see [1] for a review). In the absence of external fields the model
has a globalZ(Q) invariance which, for low temperatures, is spontaneously broken giving
rise to phase transitions of second order @r< 4 and first order forQ > 4 [2]. The
critical fluctuations forQ = 2, 3 and 4 are governed by conformal field theories with central
chargesc = % g‘ and 1, respectively, and the whole operator content of these models with
several boundary conditions is known [3].

In this paper we study the critical behaviour of these models on the square lattice, in
the presence of symmetry-breaking magnetic fields. In general, these fields will completely
break theZ(Q) symmetry, but for some special choices of these magnetic fields the resulting
effective model will have a residual symmetB(Q’), with 9’ < Q, and a domain wall
structure at low temperatures, similar to these in fHestate Potts model.

On general grounds [4], we do expect that in order—disorder phase transitions, of discrete
symmetry models, the critical behaviour is dictated mainly by the number of ground states
(zero-temperature configurations) and the relative surface energy of the infinite domain walls
connecting these ground states. This reasoning induces us to expect, for arbitrary values
of the symmetry-breaking fields, producingZ&Q’) model, an effective model in the same
universality class as th@’-state Potts model. However, this analysis is not valid in general
since some critical and multicritical models, like the Ising model and the tricritical Ising
model [5], although having the same number of ground states and domain wall structure at
low temperatures, exhibit distinct critical properties.

Straley and Fisher [6] by series expansion in the= 3 model suggested that th&2)
model, produced by the breaking fields, is in the same universality class as the two-state

1 Actually the model has a larger symmetyQ), the permutation group af objects.
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Potts model, for non-zero values of the fields. For valuegof 4, with Q' < 4, the
mean-field analysis [1, 6] indicate a multicritical point for finite values of the critical field,
where the phase transition changes from first to second order.

Our study will be done numerically by using standard finite-size scaling [7] to obtain the
phase diagram of the models, and the machinery arising from conformal invariance [8, 9]
to distinguish the several possible critical behaviours. In the location of multicritical points
for O > 4 we also perform some Monte Carlo simulations by calculating the fourth-order
cumulant of the magnetization.

2. The model

Defining at each lattice sité = (i, j) of a square lattice an integer variable =
0,1,..., @ —1, the Hamiltonian of the)-state Potts model with,, (n, =0,1,..., Q0 —1)
symmetry-breaking field§h,,} (m =0, 1, ..., n, — 1) is given by

np—1
HQ(G’ {ljlm}) = —€ Z Sn;,n;/ - hz Zﬁman;,m (1)
(.7 m=0 7

wheree > 0 is the ferromagnetic coupling and the first sum runs over nearest-neighbour
sites. In the absence of external fields the model hag(@) symmetry, since the
configuration{n;} and {n; +{,modQ} (I = 1, 2,..., Q) has the same energy. The fields
{h,,}, depending on their relative values, break this symmetry totally or partially. The
interesting cases where the symmetry is partially broken are those \hete 7 > 0
(m=0,1,...,n, —1) and the remaining symmetry &(n;) ® Z(Q — n;). This symmetry
corresponds tdZ(n;,) rotations among the variables pointing in the field directions and
Z(Q — ny) rotations among the other variables. At zero temperature we haggound
states and we do expect that thén;,) symmetry is spontaneously broken.

Rather than working with the above Euclidean version of the model it is convenient
to consider its quantum Hamiltonian version in order to simplify our numerical analysis.
As usual [10] both versions are expected to share the same long-distance physics since
the vertical-horizontal anisotropy in the coupling constants does not destroy the essential
physical ingredients of the model. The row-to-row transfer matrix as well as the associated
T-continuum quantum Hamiltonian [10] can be derived by a standard procedure (see [11]
for example). The associated one-dimensional quantum Hamiltonian insie chain is
given by

L g-1 n,—1 )
H=-)" Z((S,SM“ AR+ Y b (S e Q>’">“) )
=1 a= m=0
where plays the role of temperature and the magnetic fi¢lds (m =0, 1,...,n, — 1)

are related with the field$z,,} in (1). In equation (2)S; and R, are L2 ® L2 matrices
satisfying theZ(Q) algebra

[Ry. S] = (0 — Do Se R Rf =5 =1
whered = exp(i2/Q), and in the basis wher§ is diagonal they are given by

$5=191® -1®5®1---®1
R=191® --19R®1---®1
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where the matrice§ and R are in thelth position in the product and are given by

o-1 0-1
S=> "0l R=Y_li){li + 1ol
i=0 i=0
and the symbol{ + y], means the additiox + y), modulo Q.
In the absence of magnetic fields,(=0; m =0,1,...,n, — 1) the Z(Q) symmetry
of (1) is reflected in (2) by its commutation with tl#(Q)-charge operator

P=[& P2 =1. 3)

—-

Il
[iN

1

The Hilbert space associated with (2) can therefore be separated into disjoint sectors labelled
by the eigenvalues exi2rq/Q), (¢ = 0,1, ..., O —1) of (3). The interesting cases, which

we will concentrate on in this paper, are obtained by choosing in (2) equal values for the
magnetic field$

h1=h2=-~-=hnh=h>0. (4)

In this case the symmetrg(n,) ® Z(Q — n;) of (1) is reflected by the simultaneous
commutation of (2) with the ‘parity’ operators

A

V= A v =1 (5)

A~

W =

— I

Il
N

14 We =1 (6)

with

V=191®---19V®1l---®1
W=191® --1eW®l. o1

andV and W, located at théth position in the product, ar@ x Q matrices given by

I’l/,*l Q—l
Vo= i)+ 1, |+ Y 1)
i=0 i=ny,

n,—1

0-1
W= Z; i)+ > 1N+ Lo, |-

i=nh

The Hilbert space associated with (2) is now separated npt@ — n,) disjoint sectors
labelled by the eigenvalues eXprrv/n;,) and exgi2zrw/Q —ny) (v =0,1,...,n, — 1,
w=0,1,...,0 —n, — 1) of the operatord’ and W, respectively.

In the numerical diagonalization of (2), with periodic boundaries, all the above
symmetries, together with the translational invariance, enable us to handle large lattices
with modest computer time and memory. We use the Lanczos method to diagonalize (2)
uptoL =10, 11 and 13, forQ = 5,4 and 3, respectively.

T The cases wherg < 0 are physically equivalent to the choicgs= Q — n;,, with 2’ > 0.
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3. Results

We considered in our study only the interesting cases wiete n, > 2 andhy = hy =
-« =h,, =h >0, since in these cases a symmet§Q’) (Q’' = n;, > 2) always remains
for h # 0.

Whenh = 0 the model is self-dual with a phase transitiomgt0) = 1, which has a
second-order or first-order nature depending on wheghet 4 or Q > 4, respectively. In
the limith — oo the eigenvectors of; in (2) with eigenvaluesg’, I = n;,, ny+1, ..., 0—1,
are forbidden and we have an effectivg-state Potts model at zero field. Analysing the
effect of (2) in the remaining’-dimensional Hilbert space it is not difficult to see that the
phase transition happens at

Ae(h — 00) = Ly )
np
Between these two extremum valuesioWve estimate the phase transition cuwgh) by
using standard finite-size scaling. The curve is evaluated by extrapolations to the bulk limit

(L — o0) of sequences.(h, L) obtained by solving [7]
CLADL =T ()L + 1) L=23... 8)

wherel'; (A.) is the mass gap of the Hamiltonian (2) withsites.

Once the transition curve is estimated, in the region of continuous phase transitions we
expect the model to be conformally invariant. This symmetry allows us to infer the critical
properties from the finite-size corrections to the eigenspectrum ). The conformal
anomalyc can be calculated from the lardebehaviour of the ground-state energy(L).

For periodic chaingy(L) behaves as

Eo(L) T CVg

L~ %7 L2

wheree,, is the ground-state energy, per site, in the bulk limit agd the sound velocity.
The scaling dimensions of operators governing the critical fluctuations (related to critical
exponents) are evaluated from the finlteeorrections of the excited states. For each
primary operator, with dimension, and spins,, in the operator algebra of the system,
there exists an infinite tower of eigenstates of the quantum Hamiltonian, whose energy
E?  and momentunP? . in a periodic chain are given by

m,m m,m’?

+0(L7?) 9)

27 vg
L

E) (L) =Eo+ = —(xp+m+m)+oL™
(10)

@ /27'[
Py =(p+m —m)f

wherem,m’ =0,1,....
We present our results separately for the ca3es 4 andQ > 4 in the next sections.

3.1. Models withQ < 4

There exist three interesting cases, namely, the three-state Potts model with two fields
(Q = 3, n;, = 2) and the four-state Potts model with three and two fie@pls<(4, n;, = 3, 2).

The critical curves were obtained by solving (8) and are estimated from the spectra
of lattice sizes up taL = 11, L = 10 andL = 8 for Q = 3, Q = 4 andQ = 5,
respectively. As an example, in figure 1 we show the extrapolated curve for the case of
Q = 3 andn, = 2 and in table 1 we show the finite-size sequences together with the
extrapolated results for some valueshofWe also show in figure 1 the curve obtained by
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Figure 1. Estimates for the critical curve of the three-state Hamiltonian (2) wijtk= 2 fields.
The curve in the largest scale, for<0h < 5, interpolates the points obtained by extrapolating

the solutions of (8) fol. = 2—13 (circles). The inserted curve for<0h < 50 was obtained by
solving (8) forL = 5.

Table 1. Finite-size data}nf*“ and extrapolations for the transition temperature of the three-

state Potts chain (2) with, = 2 magnetic fieldsio = h1 = h). These sequences are obtained
by solving (8) forL = 4-11.

N\ 05 1.0 15 2.0

5 11719422 12359935 12781247 1.3086202
6 11687664 12328768 12746857 1.3049395
7 11675679 12314459 12730729 1.3032096
8 11669994 12306874 1.2722146 1.3022894
9 11666843 12302466 12717158 1.3017548
10 11664920 12299728 12714061 1.3014231
11 11663670 12297938 1.2712037 1.3012064
o0 1.1660(4)  1.2292(8)  1.2706(2)  1.3005(9)

solving (8) forL = 5. We clearly see an agreement with the limiting valug®) = 1 and

Ac(h — 00) = g predicted by (7). Similar curves are obtained in the other cases. In order
to extract the conformal anomaly and dimensions from finite-lattice data and relations (9),
(10) we need to calculate the sound velocity This can be done from the difference
between higher energy states associated with the same primary operator. In our calculations
we estimated from the lowest energy gap between the eigenstates with momentyim 2

and zero in the sector where = 1 (tables 2 and 3) ov = 1, w = O (table 4). The
conformal anomaly and dimensions are extracted from the diagonalization of lattice sizes
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Table 2. Extrapolated and conjectured results for the conformal anomaiynd anomalous
dimensionsx, (k, v) of the three-state Potts chain (2) with = 2 magnetic fieldsi{o = h1 = h)
(see the text). The conjectured values, in parentheses, are the corresponding ones in the critical

Ising model.

h c x2(0, 0) x1(1,0) x1(0, 1) x1(1, 1)

0.5 0.5008(7) 1.0007(3) 2.00(1) 0.125(1) 1.125(1)
(0.5) 1) ) (0.125) (1.125)

1.0 0.5000(0) 0.9999(6) 1.999(5) 0.1249(7) 1.1249(7)
(0.5) 1) 2 (0.125) (1.125)

1.5 0.5000(3) 1.0000(0) 1.9999(7)  0.124(9) 1.124(9)
(0.5) 1) 2 (0.125) (1.125)

2.0 0.5000(8) 1.0000(0) 2.0000(0)  0.1250(0) 1.1250(0)
(0.5) 1) 2 (0.125) (1.125)

Table 3. Extrapolated and conjectured results for the conformal anomaiynd anomalous
dimensionsx, (k, v) of the four-state Potts chain (2) with, = 3 magnetic fieldsi{op = h; =

hy = h) (see the text). The conjectured values, in parentheses, are the corresponding ones
appearing in the three-state Potts model.

h c x2(0, 0) x3(0,0) x1(0,1) x2(0, 1) x1(1, 1) x2(1, 1)

0.5 0.80(0) 0.800(1) 2.7(9) 0.133(3) 1.33(2) 1.133(3) 2.33(2)
(0.8) (0.8) (2.8) (0.133.) (1.33..) (1.133.) (2.33.)

1.0 0.799(1) 0.799(7) 2.(8) 0.132(9) 1.33(0) 1.132(9) 2.33(1)
(0.8) (0.8) (2.8) (0.133.) (1.33..) (1.133.) (2.33.)

1.5 0.7(9) 0.79(9) 2.8(3) 0.133(4) 1.33(0) 1.133(4) 2.331(9)
(0.8) (0.8) (2.8) (0.133.) (1.33..) (1.133.) (2.33.)

2.0 0.799(1) 0.799(9) 2.8(4) 0.1334(5) 1.33(0) 1.1334(5) 2.331(9)
(0.8) (0.8) (2.8) (0.133.) (1.33..) (1.133.) (2.33.))

Table 4. Extrapolated and conjectured results for the conformal anomaind anomalous
dimensionsy, (k, v, w) of the four-state Potts chain (2) with, = 2 magnetic fieldsipy = h1 =

h) (see the text). The conjectured values, in parentheses, are the corresponding ones in the
critical Ising model.

oo x2(0,0,00 x1(1,0,00 x1(0,1,00 x1(1,1,0)

05 0.500(2) 0.99(7) 1.94(4) 0.124(8)  1.124(8)
(0.5) (1) ) (0.125) (1.125)

1.0 050(5)  1.00000)  1.99(9) 0.1250(9)  1.1250(9)
(0.5) (1) ) (0.125) (1.125)

1.5 0.50000) 0.999(9)  1.999(6)  0.124(9)  1.124(9)
(0.5) (1) ) (0.125) (1.125)

2.0 0500(0) 0.999(9)  1.999(7)  0.1249(9)  1.1249(9)
(0.5) (1) ) (0.125) (1.125)

uptoL = 13, L =11 andL = 10 for Q = 3, Q = 4 andQ = 5, respectively. In
tables 2—-4 we show for some values/othe extrapolated results obtained for the cases
(Q=3n,=2)(Q =4,n, =3)and Q = 4,n, = 2), respectively. In these tables
we also present our conjectured values. The dimensipés v) andx, (k, v, w) appearing

in these tables are obtained by using in (10) the n = 1,2,3,...) eigenenergy in
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Table 5. Finite-size data for the dimensions appearing in table 3:foe 71 = 0.5.

N ¢ x2(0, 0) x3(0, 0) x1(0, 1) x2(0, 1) x1(1, 1) x2(1, 1)

4 1163061 0.887205 1.425469 0.151106 1.372092 1.151106 2.043787
5 0.987025 0.865098 1.752073 0.144513 1.352017 1.144513 2.129591
6 0.916140 0.850707 2.044138 0.141080 1.343087 1.141080 2.182175
7 0.879673 0.841268 2.309421 0.139052 1.338565 1.139052 2.216561
8 0.858147 0.834729 2526251 0.137749 1.336066 1.137749 2.240261
9 0.844289 0.829975 2.658683 0.136862 1.334600 1.136862 2.257301
10 0.834816 0.826382 2.721638 0.136230 1.333701 1.136230 2.269973
11 0.828048 0.823581 2.752943 0.135765 1.333134 1.135765 2.279661

oo 0.80(0)  0.800(1)  2.7(9) 0.133(3) 1.33(2) 1.133(3) 2.33(2)

the sector with momentumnZ /L (k = 0,1, ...) and eigenvalues exi2rv/Q — n;) and
expi2Zrw/Q —np)(v=0,1,...,n,—1,w=0,1,..., 0—n,—1) of the operator§7 and

W defined in (5) and (6), respectively. The ground-state energy is the first eneegyl)

in the sector withX = 0, v = 0) in the cases@® = 3,n;, = 2), (Q = 4,n, = 3) and in

the sectork = 0,v = 0, w = 0) in the case @ = 4, n, = 2). The extrapolations were
obtained by using the-alternatedves approximants [12]. The errors are estimated from

the stability of the extrapolations and are in the last digit. In order to illustrate these we
also show in table 5 the finite-size sequences used to estimate the dimensions in the case
whereQ = 3, n, = 2 andh = 0.5.

We see in table 2 that for all values afthe conformal anomaly is = % indicating
that the model shares the same universality class ag (Relsing model. The dimensions
1 andé correspond to the dimensions of the energy and magnetic operator in the Ising
model and the dimension2 1+ 1 andg = 1+ } are the next dimensions in the tower of
these operators (see equation (10)).

In table 3 we clearly see that the conformal anomaly for all valugsisfc = g. There
exist two modular invariant universality classes of conformal theoriesavvtiihfs1 [13]. One
of these can be represented by the restricted solid-on-seéidy model [16, 17] and the
other by the three-state Potts model with no magnetic fields. These two models, although
having the same conformal anomaly= g, have a distinct operator content. The dimension
x=0,¢,% 2 %in table 3 and the degeneracy of the sectors where the opéfaito(5)
has eigenvalues ex@z/3) and exgidx /3) indicate that the model belongs to the same
universality class as the three-state Potts model.

In table 4, as in table 2, the conformal anomaly: is % and the dimensions are those
of the Ising model indicating that both models are in the same universality class.

Beyond the values df presented in tables 1-3 we also performed a careful analysis for
small values of(h ~ 0.01) finding similar results to those presented in these tables. These
indicate that forQ < 4, where the model has a second-order phase transition in the absence
of external fields, the introduction ef, (Q > n;, > 2) fields, of arbitrary strength, brings
the model into the universality class of a Potts model withstates.

3.2. Models withQ > 4

In this case, while in the absence of external fields the models exhibit a first-order phase
transition the introduction o, magnetic fields (4> n;, > 2) of infinite and equal strength

(h — o0) render them an effective,-state Potts model, which has a second-order phase
transition. This brings the interesting possibility of a multicritical behaviour for a finite
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value ofz, when the transition curve changes from second to first order as we degérease
from the infinite value. In fact, this is the mean-field prediction [6].

Table 6. Finite-size sequences ;+1, defined in (9) for the five-state Potts model Hamiltonian
(2) with n, = 2 (ho = h1 = h) external magnetic fields. The last line gives the extrapolated
results. These sequences are calculated at the extrapolated couplirgsl.067(3), A, =
1.1137), A, = 1.3338) and A, = 1.500(1) for » = 0.05, h = 0.1, h = 0.5 and# = 1.0,

respectively.

~\" 005 0.1 0.5 1.0
4 1494578 1.293239 0.822347 0.747102
5 1.150201 0.947010 0.665147 0.632826
6 0.957555 0.784083 0.603697 0.583638
7 0.834717 0.696948 0.572906 0.558058
8 0.753559 0.646537 0.554626 0.542796
9 0.698775 0.615352 0.542598 0.532888

10 0.660931 0.594802 0.534149 0.526071

00 0.5(7) 0.5(5) 0.48(9) 0.50(0)

Since the Hilbert space grows exponentially with the simplest case where the above
critical point may occur is the five-state Potts model in the presenesg ef 2 magnetic
fields. In table 6 we present, for some valueg:pbur results for the finite-size sequences
of the conformal anomaly of the model. These sequences are obtained from (10) and (9)

12[(L + 1) Eo(L) — LEo(L + 1)]
[(L+1)2—-L2[Ex(L +1) — Ei(L+1)]

where Eo(L) is the ground-state energy for the chain of lengttand E>(L), E1(L) are
the lowest eigenenergies with momentum 0 amd 2, respectively, in the sector where
the operatord’ and W, defined in (5) and (6) has eigenvalueslj and (1). Although the
precision is lower than those of the preceding tables these results indicate thatfd@.05
we still have an Ising-like behaviour with= % Forh < 0.05, and for the lattice sizes we
were able to handle, it is not possible to obtain reliable results using (11).

A heuristic method, which was proved to be effective in obtaining multicritical points

in earlier works [16] is to simultaneously solve (8) for three different lattice sizes

CLL+1 = (11)

FLe)L =Tra()(L +1) =Tr20) (L +2). (12)

We tried to solve these equations fobG 1 > 0 (L = 5) and found no consistent solutions,
which indicates the absence of a tricritical point for a finite valué.of

Another method, also used to locate multicritical points [16], is obtained from the
simultaneous crossing of two different gaps on a given pair of lattices (instead of three
lattices as in (12)). Trying several different gaps we also did not find, within this method,
a multicritical point forhz £ 0.

Since these methods are heuristic and the lattice sizes we are considering may not be
enough to obtain the bulk limitZ( — oo) in the regionz ~ 0 we will supplement our results
by Monte Carlo simulations. These simulations will enable us to distinguish the order of
the phase transition as we change the magnetic field strength. We simulate the systems by
the heat-bath algorithm and analyse the fourth-order cumulant of the magnetization as a
function of the magnetic field. The simulations were done directly in the classical version
of the model (1). Since the evidence of a multicritical point, for non-zero valugs, of
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Figure 2. Fourth-order cumulant of the magnetization (13) as a functiof fofr the seven-state
Potts model in the presence of = 2 external fieldshg = h1=0.01 (see equation (1)). The
lattice sizes ard. =50 x 50, L = 80 x 80 andL = 170x 170.

would be large for higher values @, we chooseQ = 7 andn;, = 2 (ho = h1 = h) for
extensive calculations.
The fourth-order cumulant of the magnetization is defined by

U, =1- ML (13)
3(m2)?

where the averages are done onlax L lattice. The magnetization in (13), for a given

configuration{n;} of classical variables, is defined by

1
m= 15D o= b1).

Following Binder [17], the cumulant (13) will be zero f@r > T, andU; = % forT <T..
At the transition temperaturg. equation (13) will be zero for continuous phase transitions
and negative for first-order phase transitions.

In figure 2 we show the values @f;, for lattice sizes 50« 50, 80 x 80 and 170« 170.
In the simulations we choose= 1, 7 = 0.01 and each point was obtained by averaging
5 x 10* iterations, after thermalization. We see in this figure that while fo= 50 the
phase transition appears to be first order,Lagrows the numerical results indicates the
phase transition to be continuous. The result for the smaller laktiee50 is clearly due
to the finite size of the lattice. By repeating these simulations for even smaller valies of
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we should expect that these finite-size effects will be apparent for even larger lattices, and
our simulations are in favour of a multicritical point only /at= 0.

4. Conclusion

We have calculated the phase transition diagram and critical properties oF-sitate Potts
model in the presence of, (Q > n;, > 1) external magnetic fields of equal strength
h > 0. In the case wher® > n, > 2 the original symmetry, at = 0, breaks into
aZmn,) ® Z(Q — ny) symmetry. TheZ(n;,) part of the above symmetry relates the
configurations of thes;, distinct ground-state configurations at zero temperature, and by
standard arguments, should be spontaneously broken at low temperatures.

Our results, based on conformal invariance and supplemented by Monte Carlo simulation
indicate that, for arbitrary values @f, the order—disorder phase transition associated with
the globalZ(n;,) symmetry is in the same universality class of thestate Potts model.
Moreover, forQ > 4, contrary to the mean-field prediction, we do not see any evidence
of a multicritical point for non-zero values df. This is a surprising and quite unusual
result since the presence of equab4;, > 2 arbitrary small symmetry-breaking fields in
the O > 4 models, which in the absence of fields have finite gap and correlation length at
the transition point, will produce effective,-state Potts models with no gap and infinite
correlation length. Certainly additional calculations using different methods or even more
extended calculations will be welcome to test our available evidence in favour of the above
scenario.
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